

LET'S TALK/ PERFORMANCE

INFLUENCE OF POST-CURE ON MECHANICAL AND CHEMICAL RESISTANCE OF POLYESTERS AND VINYL ESTERS

Ronald Uitterdijk

FRP Unlimited February 6-7, 2018

END-USE PERFORMANCE REQUIREMENTS

- Resistance to chemicals
- Heat resistance
- Low maintenance
- Strength, stiffness, toughness
- Food contact (when required)
- Light weight, easy installation
- Design flexibility

Different solutions available for heat and chemicals involved. Good chemical resistance means low maintenance and peace-of-mind on performance

High mechanical strength

Selection of right resin, reinforcement, and their interaction is key

Food contact

Resins made in line with GMP for good food quality and consumer safety

Key benefit vs. steel

Enabling technology for light weight constructions in corrosive environment

Optimized design

Shaping flexibility and part integration possibility is a key composites benefit.

END-USE PERFORMANCE REQUIREMENTS

- Resistance to chemicals
- Heat resistance
- Low maintenance
- Strength, stiffness, toughness
- Food contact (when required)
- Light weight, easy installation
- Design flexibility

Different solutions available for heat and chemicals involved. Good chemical resistance means low maintenance and peace-of-mind on performance

High mechanical strength

Selection of right resin, reinforcement, and their interaction is key

Food contact

Resins made in line with GMP for good food quality and consumer safety

Key benefit vs. steel

Enabling technology for light weight constructions in corrosive environment

Optimized design

Shaping flexibility and part integration possibility is a key composites benefit.

INDUSTRY STANDARDS HELP IN ACHIEVING GREAT PART PERFORMANCE

- Well-established international standards
 - Focus today: EN 13121 "GRP tanks and vessels for use above ground"
- Providing guidelines on part design, manufacturing and installation
 - Part 1: Raw materials, specifications, acceptance conditions
 - Resin chemistry linked to 8 classes with increasing corrosion resistance
 - Part 2: Composite materials Chemical resistance
 - Media types according 3 groups of increasing chemical attack
 - Build-up of laminate for optimal performance
 - Part 3: Design and workmanship
 - Calculation of loads, design of supports, fittings
 - · Quality control, including pressure testing
 - Part 4: Delivery, installation and maintenance
 - Handling and transport, installation guidelines
 - Ensuring installation quality and avoiding damage

IMPORTANT FOR QUALITY OF COMPOSITE PART

- Resin selection
- Reinforcement selection
- Curing agent formulation
- Optimal curing
- Are determined by design standard, customer specifications, corrosion resistant lists, and/ or following Aliancys Chemical Resistance advice
- Proper part cure is very important for final part performance

SELECTING THE RIGHT RESIN FOR ELEVATED TEMPERATURES

- Chemicals are mostly more corrosive at elevated temperatures
- EN 13121 standard prescribes that HDT of the resin should be at least 20°C higher than the exposure temperature of the part
- Component may loose mechanical integrity if use temperature gets too close or above HDT

BASICS OF CURE THROUGH FREE RADICAL POLYMERIZATION

CURE MECHANISM

GLASSY STATE WITH UNREACTED RADICALS AND DOUBLE BONDS

POST CURE: REINITIATING FREE RADICAL POLYMERIZATION

COMPLETE CURE ACHIEVED

SOME CONSIDERATIONS ON POST-CURE

TIME AND TEMPERATURE

- Norm suggests post-cure of 1 hour per mm of laminate, at a temperature close to HDT
- According EN13121-2 at least 4 hours at 80°C or HDT (for certain media)
- According DIN18820: 1 hour per mm laminate thickness, at maximum 100°C for 15 hours, but at least 5 hours at minimum 80°C, and slow cooling down

IMPORTANT

- Post-cure is strongly recommended in BPO/ amine cure system and should be done within 2 weeks after construction
- Obviously, post-curing temperature should also reach the inner part of the tank

HEAT TRANSFER OVEN TEST

- Atlac 430 10 layer CSM laminate made with 5 thermocouples inside
- Hand lay-up
- Oven test at 60°C and 80°C

HEAT TRANSFER TAKES 2-2.5 HOURS FOR 4-5 MM THICKNESS

HDT LOWER WHEN CURED AT AMBIENT TEMPERATURES

POST-CURE HELPS TO BUILD HDT

HDT VS. POST-CURE TIME AT 60 °C

Note that at 60 °C the HDT does not reach the maximum level possible

POST-CURE HAS MAJOR EFFECT ON HDT AND RESIDUAL STYRENE CONTENT

POST-CURE HAS MAJOR EFFECT ON HDT AND RESIDUAL STYRENE CONTENT

SAME FOR ISOPHTHALIC RESIN

IN-HOUSE CHEMICAL RESISTANCE TESTING CAPABILITY

According to:

ASTM C 581and DIN 53393 (EN 977 - EN 13121-2)

ASSESSMENT OF CHEMICAL RESISTANCE

Test Criteria

Aliancys interpretation method (based on ASTM C581 and EN13121):

Retained Flexural Strength [%] =
$$\frac{Flexural\ Strength\ of\ specimen\ after\ test\ period}{Flexural\ Strength\ of\ specimen\ after\ cure}$$
 × 100%

Retained Flexural Modulus [%] =
$$\frac{Flexural\ Modulus\ of\ specimen\ after\ test\ period}{Flexural\ Modulus\ of\ specimen\ after\ cure}$$
 × 100%

retention of Chemical Strength [%] =
$$\frac{retention\ of\ Flexural\ Strength + retention\ of\ Flexural\ Modulus}{2}$$

EXTRAPOLATION TO ASSESS LONG TERM PERFORMANCE

AT LOWER EXPOSURE TEMPERATURE EFFECT OF POST-CURE ALREADY VISIBLE

POST-CURE NECESSARY FOR BETTER RESISTANCE TO SOLVENTS

EFFECT POST-CURE MORE PRONOUNCED AT HIGHER EXPOSURE TEMPERATURES

CONCLUSIONS ON POSTCURE

- HDT of ambient cured composites will stay around 50-60°C and it will not reach maximum HDT value
- No post-cure and mild post-cure results in same degree of chemical resistance
- In order to obtain highest possible heat resistance and chemical resistance, composite equipment has to be post-cured at a temperature around maximum HDT/Tg value
 - Will result in highest heat resistance
 - Will result in highest chemical resistance
- For less demanding circumstances follow the standards

GENERAL RECOMMENDATIONS

- Postcure is strongly recommended in BPO/amine cure system, and should be done within 2 weeks after construction
- Postcuring temperature should also reach the inner part of the tank
- Ambient temperature cured composite components will resist aqueous acid and salt solutions at ambient conditions
- Ambient temperature cured composite components will resist aqueous solutions also at elevated temperature.
 - Post curing process progresses faster then diffusion process

GENERAL RECOMMENDATIONS

- Barcol of finished part should be at least 80% of the value quoted by the resin manufacturer
 - To be measured on sections cut out after post cure
 - If not possible to take out sections, it is required to connect a test laminate to the tank representative for the entire process
 - It is not allowed to measure Barcol hardness on the tank wall (part interior), as this may damage the surface and reduce tank lifetime.
- The maximum service temperature given in the chemical resistance guide is based on fully postcured material in combination with the correct reinforcement material and curing system

PROVIDING EXPERTISE FOR OUR CUSTOMERS

- Excellent track record of use Atlac resins in Industrial markets
- Extensive experience in chemical resistance testing, laminate build-up for maximizing chemical resistance
- "Chemical Resistance Advice" as official document for your reference
- Experienced Technical Service team to support you in troubleshooting and continuous process improvement

ALIANCYS CAN HELP IN MAKING THE BEST RESIN SELECTION FOR YOUR APPLICATION

- To make accurate recommendations we need to know:
 - Chemical environment, composition, concentrations, pH values, storage conditions
 - Service temperature, temperature profiles, maximum temperatures
 - Mechanical exposure, pressure, static and cyclic loading
 - Type of composite material/ build-up used (fiber volume, chemical resistance layer)
 - Equipment and process
- Available in 5 languages
- chemical.resistance@aliancys.com

CHEMICAL RESISTANCE GUIDE

		ORTHO	150	INPG	BPA		VE/VEU						
	CONGENTRATION	PALATAL® P 69	SYNOLITE" 0266	PALATAL® A410	010+	ACe 362	AC# 580	ACe 430	ATLACe 5200 PC	ATLACe 590	ATLACE E-NOVA FW 2045	ATLACE PREMIUM 600 (ST YRENE-FREE)	20
CHEMICAL SUBSTANCE	8	PALA	SYNC	PALA	ATLACe	ATLA	ATLA	ATLA	ATLA	ATLA	ATLACe I FW 2045	ATLA (STY)	NOTES
A					-	-			-				_
ACETALDEHYDE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACETIC ACID	10	40	40	60	90	95	96	90	90	100	100	40	0
ACETIC ACID	15	N.R.	N.R.	60	90	96	96	90	90	100	100	25	0
ACETIC ACID	25	N.R.	N.R.	60	90	96	95	90	90	100	100	N.R.	0
ACETIC ACID	40	N.R.	N.R.	60	80	80	80	80	80	90	90	N.R.	
ACETIC ACID	50	N.R.	N.R.	40	70	70	70	70	70	80	80	N.R.	
ACETIC ACID	75	N.R.	N.R.	25	60	60	60	60	60	65	65	N.R.	
ACETIC ACID	80	N.R.	N.R.	25	45	45	45	45	45	45	45	N.R.	
ACETIC ACID	85	N.R.	N.R.	N.R.	45	45	45	45	45	45	45	N.R.	
ACETIC ACID	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	25	25	N.R.	
ACETIC ACID GLACIAL	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	25	25	N.R.	
ACETIC ANHYDRIDE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	-		N.R.	9
ACETIC : NITRIC ACID : CHROMIC OXIDE : H2O	3:5:3:89	-	-	-	-	-	-	65	65	80	-		
ACETIC : SULFURIC ACID : H2O	20:10:70	-	-		-	-	-	100	100	100	-	-	
ACETONE	- 5	N.R.	N.R.	N.R.	80	80	80	80	80	80	80	N.R.	
ACETONE	10	N.R.	N.R.	N.R.	80	80	80	-	-	80	80	N.R.	
ACETONE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACETONE : METHYLETHYL KETONE : METHYLISOBUTYL KETONE : H2O	2:2:2:94	N.R.	N.R.	N.R.	N.R.	-	-	-	-	40	40	N.R.	
ACETONITRILE	al	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACETYL ACETONE	20	-	-	-	-	-	-	40	40	50	-	-	
ACETYLACETONE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACETYL CHLORIDE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACROLEIN (= ACRYLALDEHYDE)	20	-	-	-	-	-	-	40	40	40	-	-	
ACROLEIN (= ACRYLALDEHYDE)	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ACRYLAMIDE	50	N.R.	N.R.	-	-	-	-	-	-	35	35	25	- 1
ACRYLIC ACID	25	N.R.	N.R.	N.R.	45	45	45	45	45	45	45	-	
ACRYLIC ACID	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	20	20	N.R.	
ACRYLIC LATEX	al	-	-	60	80	80	80	80	80	80	80	-	
ACRYLONITRILE	100	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	
ADIPIC ACID	al	30	40	60	80	80	80	80	80	80	80	40	
ADIPONITRILE	al	N.R.	N.R.	N.R.	50	50	50	50	50	50	50	N.R.	
AIR	100	60	60	100	90	180	150	100	100	200	200	80	0
ALFOL 810	100	-	-	25	60	100	60	60	60	100	100	-	
ALKYLAMINOPOLYGLYCOLETHER	al	25	25	25	25	25	25	25	25	26	25	25	
ALKYLARYL AMMONIUM SALT	al	25	25	60	80	80	80	80	80	80	80	25	
ALKYLARYL SULFONATE SALTS	al	-	-	-	60	60	60	60	60	60	60	-	
ALKYLARYL SULFONIC ACID	al	-	-	25	60	60	60	60	60	60	60	-	
ALKYLBENZENE AMMONIUM SALT	al	25	25	60	80	80	80	80	80	80	80	25	
ALKYLBENZENE SULFONIC ACID	all	N.R.	-	25	60	60	60	60	60	60	60	-	
ALKYLNAPHTALENE SULFONIC ACID	al	N.R.	-	25	60	60	60	60	60	60	60	-	
ALKYLNAPHTOLOPOLYGLYCOLETHER	all	25	25	40	60	60	60	60	60	60	60	40	

MORE INFORMATION

- Product and case study information on <u>www.aliancys.com</u>
- Please contact your Aliancys Technical Service representative for more detailed information and for our Chemical Resistance information service

LET'S TALK/