

UltraAnalytix™ NDT Technique for FRP

The Challenge: Generate a curve to allow us to plan repair & replacement of FRP as for metals.

Steel Thickness

Year

Mechanical Integrity and FFS of FRP

- Requires
 - Non-Destructive Methods that are repeatable and reliable to evaluate the current structural capacity and condition of a component.
 - Non-Intrusive so that plant operations do not have to be shut down to complete and have the safety of plant and personnel in mind.
 - Codes and standards based on data for evaluation.

Normal FRP Construction

FRP Damage & Failure

Conventional FRP Inspection

- Life expectancy and fitness for service is determined by the <u>life of the corrosion barrier</u>
 - Life of the corrosion barrier is determined by <u>visual</u> <u>internal inspection</u> to look for:
 - Cracks, Gouges, Blisters, Surface condition, Abrasion
- Mechanical integrity is determined from:
 - Acoustic emission
 - Premature end-of-life determination
 - Destructive testing of cutouts
- ❖ 100% INTRUSIVE

Conventional FRP Inspection

- No scientific or engineering criteria
- Very limited standards or codes apply
- Limited relationship to the ability of FRP to continue operating.
- Significant differences among inspectors

Key Concept

- Percentage of Design Stiffness (PDS) $= \frac{Current\ Flexural\ Modulus}{Theoretical\ Flexural\ Modulus} x100\%$
- Current Flexural Modulus is available from destructive tests
- Theoretical Flexural Modulus is calculated from Lamination Theory.

Quantifying Overall FRP Condition

Flexural Modulus

- Relates to the condition of the entire laminate: resin, glass, interface bonds.
- Includes corrosion barrier and structural layers.
- One of the factors included in determining resin response to corrosion (ASTM C581).
- Includes effects of delaminations and micro-cracking of resin.
- Includes effects of resin damage loss of cross-linking, Tg loss, softening, porosity
- Includes effects of flaws and defects.
- This can be measured!

Comparison of Steel to FRP

Steel

FRP

UltraAnalytix™

- Non-destructive, non-intrusive, ultrasonic method.
- Quantifies current condition of FRP.
- Repeatable, Reproducible
 - Validated by Swerea KIMAB, University of Alabama, York University Toronto, Customers, and UTComp
- Used on New and In-Service Equipment
- No plant shut-down required
- Ongoing updating of Remaining Service Life and database
- Cost Effective
- Mobile
- Available since 2008

Very Basic Ultrasound

Metal

Identifies defects.

Material properties are constant,
therefore constant UT responses

FRP

Many features are not defects.

Material properties affect UT responses. Changes in material properties determined from UT.

The complexity of FRP (e.g. glass, matrix, etc.) does <u>not</u> allow for recommendations to be given from the information on the screen.

<u>UltraAnalytix Post-Processing</u> of the *raw* data reveals valuable information about

- Remaining Service Life
- Corrosion Barrier
- Strength
- Thickness

Calibration

Conventional

- Constant sonic velocity
- Focussed on flaw and discontinuity detection and classification
- Primary results determined from classifying flaws and defects.

UltraAnalytix™

- Sonic velocity not constant
 - 15% variation can occur within inches
- Focussed on attenuation along signal path.
- Primary results are determined only from backwall reflection.
- Conventional calibration samples do not provide relevant data.

Correlation

FRP Damage & Failure

ULTRAAnalytix measures changes in laminate flexural modulus

Data from 800 Inspections

- 800 inspections with multiyear data
- > FRP Age from 0 to 48 years

Corrosion Barrier Damage

- Non-intrusive assessment of:
 - Depth of damage
 - Possible loss of resin Tg
 - Permeation

Application to Bonding

Pipe Joint

▶ UltraAnalytix™

How UltraAnalytix™ works

- Field data and asset information.
- 2. Readings and information combined into data file.
- 3. Transmit data file to UTComp
- 4. Produce report and send to Customer.

Return on Investment

- UltraAnalytix maximizes the lifespan of your FRP assets, saving you money and minimizing production impact
 - Accurate service-life forecasting
 - Millions spent on premature repair and replacement
 - UTComp has helped Cargill save more than \$33 million in tank replacement costs since 2012. For every \$1 spent, saved \$10
 - No downtime for FRP inspections also reduces operating costs

Comparison between UltraAnalytix and other types of evaluation

Method	Equipment operating	Maintains structural Integrity	Internal Structural Changes	Safety Factor Updated	Repeatable	Reliable	Minimizes confined space entry	Inspect Time
UltraAnalytix								15-60 min
Visual Inspection								1-4 hours
Destructive Testing								2 days
Acoustic Emission								2 days+
Digital Radiography								1-4 hours
Thermography								15-60 min
Ultrasonic Thickness Testing								15-60 min

Legend				
Capable				
Possibly Capable				
Not Capable				

UltraAnalytix™ Limitations

- Operates best at temperatures >50°F or 10°C
- Structures with foam cores and thick (>3inch or 7.5cm) balsa core
- Pipe <5cm (2inch) outside diameter</p>
- Magnetic fields within 2400mm of conductor carrying 120000+ Amps

Case Studies

A number are available at:

www.utcomp.com/case-studies/

260 Holiday Inn Drive, Bldg A

UTComp® System Used in Preventing Failure

By: Geoff Clarkson, P.Eng., FEC

260 Holiday Inn Drive, Bldg A Cambridge, ON N3C4E8

Using the UTComp® System to Monitor Vessel Condition and Restoration

By: Geoff Clarkson, P.Eng.

Case Study - FRP Scrubbing Column

- Function: Scrub vapors of aHCl, aHF and organics with sodium hydroxide
- ❖ Hand lay-up with 2N 4M corrosion barrier

 Packing-
- Bisphenol-A vinyl ester resin with BPO/DMA cure
- Removed from service by the plant operations in 2015 based on internal visual inspection of corrosion barrier

Case Study – FRP Scrubbing Column

- No access to any of the inner surface.
- Simulated non-intrusive inspection while operating.
- After NDT, cut-outs were removed for verifications.
- Destructive Stiffness values were within 14% of UltraAnalytix values
- Corrosion Barrier damage same for UltraAnalytix and cutout sections

Case Study – FRP Scrubbing Column

- Based on PDS, conservative prediction of remaining Structural life: 25 to 27 years
- Based on Corrosion
 Barrier damage
 Remaining Service Life:
 Approx. 45 years

Questions?

Geoff Clarkson or Jo Anne Watton

519-620-0772 inquiries@utcomp.ca

The good thing about science is that it is true whether you believe it or not.

Neil deGrasse Tyson

