Inspection guidelines and determination of reasons for failure of flue gas ducts and stacks of fibre-reinforced plastics

Klas Esbo & Love Pallon

klas.esbo@swerea.se, love.pallon@swerea.se

KIMAB

Swerea KIMAB is one of the oldest Swedish research institute, founded 1921 and it is a merge between the Swedish corrosion institute and the institute for metal research

Gunnar Bergman started the polymer group in 1981

Polymeric materials

Karin Jacobson Group leader

Daniel Ejdeholm Research leader

Nina Pendergraph Researcher

Klas Esbo Researcher

Love Pallon Researcher

Martina Källrot Janstål Researcher

Dinko Lukes Researcher

Johanna Josefsson Trainee

Our expertise – Need driven industrial research

- Member program: Polymeric Materials in Corrosive Environments
- Approximately 30 members
- From producers to end users
- Main focus areas are chlorine production, sulphuric acid, flue gas cleaning and pulp and paper production
- We are also active in a number of research projects and do contract work, material recommendations, ageing studies and exposures in harsh environments (H₂SO₄, HF, ClO₂, spent acid, chlorine....)

Agenda

- Damage modes of FRP a Handbook
- Inspections
- Investigation of flue gas stacks
- KIMAB's "in-house flue gas stack"

Damage modes of FRP

Blisters

Diffusion

Corrosion barrier

Structural layer

Stress corrosion cracking

Delaminations

Cracks

Diffusion

- FRPs are permeable
- Diffusion of the corrosive media into the corrosion barrier is okay, but never into the structural layer
- Microscopy analysis of a polished cut-out can be an efficient tool to determine the diffusion

Corrosion barrier

Structural layer

Blisters

- A combination of diffusion and an osmotic pressure
- In general they are superficial and situated close to the surface

Delamination

- Often due to thermal stress
- In general more severe than blisters
- Can often be repaired

Stress corrosion cracking

- A combination of chemical attack and stress on fibers
- Rapid and dangerous raptures
- Impact damage can be a starting point for failure

Inspections

Composition **Destructive testing** Mechanical strength Thermal history by differential scanning calometry (DSC) Chemical composition by Fourier Transform Structural laminate Infrared Spectroscopy Microscope %T (FTIR) Corrosion barrier 4000 3000 2000 1000 400

Wavenumber [cm-1]

Non-destructive testing

- Visual inspection
- Ultrasound
- X-ray
- Acoustic emission
- Barcol Hardness

Investigation of flue gas stacks

Fitness for service

- What are the limiting factors when the chemical conditions are mild?
- How will the mechanical properties change during the service life?

45 year old flue gas stack

- The stack was originally 40 m high
- Elongated (1985) to 68 m
- The diameter is approx. 3.6 m.

Severely attacked

45 year old flue gas stack

- Mechanical properties

Flexural modulus

Only a slight decrease in modulus!

(The deviations between 30 and 45 years could be due to misalignment in fiber direction for the sample cut-out)

Investigation

- 8 flue gas stacks were investigated according to their reduction in the elastic modulus (E-modulus)
- The reduction was determine by comparison of destructive tensile test and the optimal theoretical E-modulus, which was calculated by classical lamination theory
- The damage modes of the stacks were predominately surface cracks

and deeper cracks

The stacks were probably designed with a safety factor of 10

Method

How to measure the reduction?

KIMAB's approach:

Calculations

-Based on classic lamination theory, The theoretical E-modulus can be determined from a burn out

CSM

WR

Density		
ρ,	1140,0 _{kg/m} °2	densitet resin
The cample	Notes	

The samples	Notes	
Length	25,72 mm	Average
Thickness	21,69 mm	Average
Height	7,99 <u>mm</u>	Average

I	The glass fibres	dimmensions	Nr
ı	Thickness of CSM	0,3 mm	5
ı	Thickness of WR	0,65 mm	1
ı	Thickness of R	1,2 mm	2

The samples weigh	it	Notes
Weight of melting pot	25,2 g	
+ the sample	31,8 g	
After the burn out	28,2 g	

The glass fibres	v eight	Notes
Weight of CSM	0,68 g	
Weight of WR	0,35 g	
Weight of R	1,94 g	
Tot	2,97 g	

Calculations

p _g	2530	2560	2540
p,	1140	kg/m^3	densitet resin
E resin	4000	MPa	modul resin
	CSM	WR	Roving

250 500 (N/mm)/(kg/m2 glass) Ultimate tensile unit strength per layer i 16000 28000 (N/mm)/(kg/m2 glass) Unit modulus per layer i

Area				
Average area	557,877 mm^2			
			Weights	
Volume			Weight of the sample	6,618 g
Volume tot.	4454,65 mm^3	4,45 cm3	Weight of the glass	3,0 g
Volume glas	1,17 cm3	26,3 vol%	Glass content	44,9 wt%
Volume resin	3,28 cm3	73,7 vol%	Resin content	55,1 wt%
			Check	0,002 Should be close to zero

	CSM	WR	Roving	Unit	Notes
m _g	50	60	75	% g/g	Weight content of each glass
t _i	1,27	0,98	0,69	mm	Theoretical thickness in order to create 1kg glas/m2
m _i	0,245	0,626	1,739	kg/m2	Weight of glass per area (typical values 225, 450, 600 g/m2)
n _i	5	1	2	Nr	
Calculated thickness	0,31	0,61	1,19	mm	Calculated thickness of one layer
Meassured thickness	0,3	0,65	1,2		Meassured thickness

$U_{lam,k}$	2140	(N/mm) Ultimate tensile unit strength fot the laminate			
$X_{lam,k}$	124519	(N/mm) Ultimate modulus for the laminate			
t	4,55	(mm) Thickness of the glass			
S	470	(MPa) Strength			
E	31343	(MPa) E-modulus			

Example

Resin

Atlac 382-05

120-140°C, SO₃, SO₂, HCl

Flue gas PDSquench2=0,67 from soda recovery boiler PDSquench1=0,53

Flue gas, stack Ca 65°C

Cut-outs

(PDS=Percent of design strength)

Top part PDStop=0,79

Intermediate part

 $PDS_{\text{int.med.}} = 0,65$

Figure 59. Surface cracking in non-repaired laminate (at a manhole), i.e. 30year-old laminate, from the bottom part of the scrubber.

Bottom part PDSbottom=0,68

Result

Observations

- KIMAB's approach correlates well with the observations from the microscope analysis, and thereby enables remaining service life determinations
- As long as no severe damage modes can be seen, the reduction in E-modulus is limited

New project, In-house "flue gas stack"

- What about other losses in material properties?
- Delaminations, a reason for concern
- Can we provoke delaminations by rapid heating?
- Need for deeper understanding of the mechanisms behind delamination
- Previous experiments with unrestricted test piece failed to provoke delamination

Continuation – New project, in-house "flue gas stack"

- Test pieces with restricted expansion
- Industrially produced laminates
- Downsizing
 - Diameter ≈ 0.4 m
 - Height ≈ 1.5 m
- Simulated by-pass operation
 - 60 °C and 98% RH
 - 200 °C
- 20 kW heating, 20→200 °C in 8 s
 - Thermal chock to stimulate stresses
- High convection of air, 10 m/s in the stack
- Longtime cyclic exposure

Continuation – New project, in-house "flue gas stack"

- Possibility to evaluated materials before full scale construction
- To understand the mechanism behind delamination
- Online monitoring with sensors possible

Calculations on downsizing

Temperature gradient

Hoop stress

- Corrosion layer 3.5 mm, mechanical laminate 6.5 mm
- At a diameter of 300 mm hoop stress starts to deviate from real conditions
- Possible to retain wall thickness of an original stack

New possibilities

- Screening of materials
- Effect of insulation
- Online monitoring with coupled sensors
 - Acoustic emission
 - Infrared camera
 - Lamb waves
- Your suggestions on FRP build-up and monitoring techniques to be tested are most welcome!

Thanks to our members!

Accoat A/S	INOVYN/Solvay Specialty Polymers SpA
AGRU Kunststofftechnik GmbH	Kemira Kemi
Akzo Nobel Industrial Chemicals B.V.	Lubrizol Deutschland GmbH
Akzo Nobel Pulp and Performance Chemicals AB	Lyma Kemiteknik
Aliancys Nederland B.V.	Nordpipe Composite Engineering Oy
Ashland Technologies GmbH	Plasticon Germany GMBH
Covestro Deutschland AG	Polynt Composites Norway
Dow Chemical	SABIC Innovative Plastics
FIP SpA Formatura Iniezione Polimeri	SIMONA AG
Flowtite Technology AS	Steuler Nordic
Georg Fischer DEKA Gmbh	Tekniska verken i Linköping
Glencore Nikkelverk AS	Termap
Hetech Aktiebolag	Umeå Energi
INOVYN Sverige AB	Uponor GmbH

Scientific Work for Industrial Use www.swerea.se